Continuing the Tradition

VerSys Heritage®
Hip System
The low-friction hip prosthesis developed by Sir John Charnley has more than a 20-year history of outstanding results. With the VerSys Heritage® Hip System, Zimmer has applied this successful concept to primary, revision, and CDH implants, offering a wide range of styles and sizes for most cemented hip indications. All three stem options preserve the geometry and polished surface characteristics of that first-generation prosthesis, while incorporating additional features designed to further enhance implant performance.

**Rectangular Cross-Sectional Geometry**

incorporating a flat back design consistent with the Charnley design philosophy, helps enhance torsional stability.

**Tapered Distal Tip**

design helps reduce strains in the cement compared to conventional stems with non-tapered distal hole designs. The distal centralizer fits over the outside diameter of the stem tip.

**Smooth, Polished Surface Finish**

on forged, high-strength Zimaloy® Cobalt-Chromium-Molybdenum Alloy.

**VerSys® Hip System Instrumentation**

utilizes a core set of instruments for a system approach to provide a simple, precise, and reproducible implantation.
Wide Range Of Motion results from optimized neck geometries.

Minimized Conical Collar, characteristic of the original Charnley design philosophy, acts as an insertion guide to promote accurate alignment and centralization.

Optional Proximal Sleeve Centralizer helps provide for an optimal cement mantle by neutrally positioning the femoral component. Two recesses in the proximal body help position the centralizer on the stem.

Distal Centralizer with a "five-point star" design configuration helps improve cortical diaphyseal contact and stem alignment when compared to distal centralizers with four prongs.

Extended Offset options are possible because of a parallel medial neck shift that does not change the stem’s 135° neck angle or increase leg length.2,3

Kaplan Meier Survivorship Analysis of Revisions of Charnley-Type Implants for Stem Loosening

The VerSys Heritage Hip is true to the original form of Sir John Charnley’s first-generation hip stem, which has proven to be more successful than second-generation designs.4,5
Building on the solid foundation of the *VerSys Heritage* design, the revision prostheses offer additional stem length, neck length, and offset options. This allows the system to meet the anatomical requirements of Type I and Type II femoral deficiencies and, in some cases, Type III deficiencies.

**Increased Neck Length and Offset**
compared to the standard neck length and offset, help restore proper joint kinematics in revision cases.

**Full-Length, All-Metal Provisionals**
allow for an accurate trial insertion and reduction regardless of surgical approach.

**Threaded Bullet Tip**
helps stabilize the provisional stem distally for more accurate trial alignment.
CDH
Congenital Dysplasia Hip

Available in two sizes, the CDH prosthesis is designed to address the anatomical characteristics associated with developmental dysplasia and congenital dislocation of the hip. Generally, the CDH stems are smaller than the primary and revision stems with less curvature on the medial face to accommodate the endosteal anatomy of a hypoplastic canal. The reconstruction is further facilitated by a neck angle of 125°, a shortened neck length, and a minimal offset.

Size 9
with a minimized medial curve and femoral offset, accommodates congenital dislocation, allowing the acetabular component to be placed in its true anatomical position.

Size 10
accommodates the anteverted and valgus position of the femoral neck in developmental dysplasia.

Full-Length, All-Metal Provisionals
allow for an accurate trial insertion and reduction regardless of surgical approach.

Threaded Bullet Tip
helps stabilize the provisional stem distally for more accurate trial alignment.

Neck Length & Offset
accommodate CDH anatomy.
References


4. Estok DM, Ramamurti BS, Weinberg EW, et al. A stem design changes to reduce peak cement strains around cemented total hip arthroplasty by 45%. Presented at: 63rd Annual Meeting of the American Academy of Orthopaedic Surgeons; Feb 22-26, 1996; Atlanta, GA.

